Fabrication of Functionalized Double-Lamellar Multifunctional Envelope-Type Nanodevices Using a Microfluidic Chip with a Chaotic Mixer Array
نویسندگان
چکیده
Multifunctional envelope-type nanodevices (MENDs) are very promising non-viral gene delivery vectors because they are biocompatible and enable programmed packaging of various functional elements into an individual nanostructured liposome. Conventionally MENDs have been fabricated by complicated, labor-intensive, time-consuming bulk batch methods. To avoid these problems in MEND fabrication, we adopted a microfluidic chip with a chaotic mixer array on the floor of its reaction channel. The array was composed of 69 cycles of the staggered chaotic mixer with bas-relief structures. Although the reaction channel had very large Péclet numbers (>10(5)) favorable for laminar flows, its chaotic mixer array led to very small mixing lengths (<1.5 cm) and that allowed homogeneous mixing of MEND precursors in a short time. Using the microfluidic chip, we fabricated a double-lamellar MEND (D-MEND) composed of a condensed plasmid DNA core and a lipid bilayer membrane envelope as well as the D-MEND modified with trans-membrane peptide octaarginine. Our lab-on-a-chip approach was much simpler, faster, and more convenient for fabricating the MENDs, as compared with the conventional bulk batch approaches. Further, the physical properties of the on-chip-fabricated MENDs were comparable to or better than those of the bulk batch-fabricated MENDs. Our fabrication strategy using microfluidic chips with short mixing length reaction channels may provide practical ways for constructing more elegant liposome-based non-viral vectors that can effectively penetrate all membranes in cells and lead to high gene transfection efficiency.
منابع مشابه
Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.
The creation of complex three-dimensional (3D) microfluidic systems has attracted significant attention from both scientific and applied research communities. However, it is still a formidable challenge to build 3D microfluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. Here, we demonstrate rapid fabrication of high-aspect-ratio microflu...
متن کاملFacile fabrication of microfluidic systems using electron beam lithography.
We present two fast and generic methods for the fabrication of polymeric microfluidic systems using electron beam lithography: one that employs spatially varying electron-beam energy to expose to different depths a negative electron-beam resist, and another that employs a spatially varying electron-beam dose to differentially expose a bi-layer resist structure. Using these methods, we demonstra...
متن کاملA Magnetic Microstirrer and Array for Microfluidic Mixing
We report the development of a micromachined magnetic-bar micromixer for microscale fluid mixing in biological laboratory-on-a-chip applications. The mixer design is inspired by large scale magnetic bar mixers. A rotating magnetic field causes a single magnetic bar or an array of them to rotate rapidly within a fluid environment. A fabrication process of the magnetic bar mixer is developed. Res...
متن کاملNovel Non-equilibrium Electrokinetic Micromixer with Nanoporous Membrane Fabricated by Laser Polymerization Technique
We propose a non-equilibrium electrokinetic (EK) mixer with a nanoporous membrane fabricated on a microfluidic chip by laser polymerization technique. A non-equilibrium EK mixer had an array of nanochannels to generate a vortex using ion depletion and consequent electroconvection [1]. The nanochannels, however, require expensive and complicated fabrication processes. On the other hand, the lase...
متن کاملIntegrated Cell Manipulation Systems
80 A new type of microfluidic system for biological cell manipulation, a CMOS/microfluidic hybrid, is demonstrated. The hybrid system starts with a custom-designed CMOS (complementary metaloxide semiconductor) chip fabricated in a semiconductor foundry using standard integration circuit technology. A microfluidic channel is post-fabricated on top of the CMOS chip to provide biocompatible enviro...
متن کامل